Yanto_90

Practice makes Perfect

Seputar Info tentang Processor coreI7

Sebelum lebih jauh mengupas tentang bagaimana overclock pada prosessor Intel Core i7, terlebih dahulu saya ingin memperkenalkan teknologi prosessor ini dan perbedaannya dengan teknologi yang ada sebelumnya.

IMC (Integrated Memory Controller) & Triple Channel DDR3

Perbedaan mendasar antara teknologi Core i7 dengan teknologi Core 2 Duo/Core2 Quad terletak pada IMC (Integrated Memory Controller). Pada Core2 Duo/Core 2 Quad, IMC tertanam di dalam chipset (X38, X48, P45, dan sebagainya). Hal ini menyebabkan kemampuan throughput dari memory sangat tergantung dari kemampuan chipset. Sedangkan pada Core i7, IMC dipindahkan ke prosesor sehingga chipset secara teoritis dapat bekerja lebih ringan dan throughput kecepatan memory bandwidth lebih cepat karena tidak perlu lagi melewati chipset (Northbridge).

Image

Perbedaan arsitektur Core 2 Duo/Core2 Quad dengan Core i7

Front Side Bus 1066, 1333 dan 1600 MHz yang dikenal pada prosessor Core2 Duo/Core2 Quad berganti menjadi QPI (Quick Path Interconnect) pada Core i7. Demikian juga kecepatan FSB yang dulunya maksimal 1.6 GT/s berlipat menjadi 6.4 GT/s. Hal ini dikarenakan kecepatan memory controller internal pada CPU lebih efektif dibandingkan memory controller pada Northbridge, belum lagi ditambah implementasi Triple Channel DDR3 pada platform Core i7. Walaupun, manfaat atau efek implementasi Triple Channel DDR3 ini masih belum begitu signifikan pada aplikasi nyata.

Sebagai tambahan, pada Core i7 Intel kembali mengimplementasikan teknologi Hyperthreading (HT) atau juga dikenal Simultaneous Multi Threading (SMT). Total inti prosessor pada Core i7 berjumlah 4 buah inti (core) dan masing masing inti memiliki SMT, sehingga total ada 8 thread pada sebuah prosessor Core i7.

QPI (Quick Path Interconnect)

QPI adalah kecepatan bus pengganti FSB, kalau FSB adalah jalur transmisi data antara chipset, prosessor dan memory, QPI lebih sederhana lagi. QPI adalah kecepatan transmisi data dari prosessor ke chipset. Bila sebelumnya kita mengenal Northbridge sebagai chipset yang mengatur prosessor, memory dan jalur PCI-E, maka pada Core i7, chipset dikenal dengan nama IOH (Input-Output Hub) yang bertugas sebagai jalur input dan output dari seluruh sistem.

Bclk (CPU Host Frequency) & CPU Multiplier

Total clock atau total frekuensi sebuah prosessor Core i7 adalah hasil dari perkalian CPU Host Frequency (Bclk) dengan CPU Multiplier (CPU Ratio). Sebagai contoh, sebuah prosessor Core i7-965 Extreme Edition memiliki kecepatan sebesar 3.2 GHz, kecepatan ini berasal dari hasil perkalian 24 (CPU Ratio) dengan 133 MHz (Bclk).

24 x 133 MHz  = 3192 MHz (dibulatkan menjadi 3200 MHz)

Untuk mengubah settingan ini di dalam BIOS (penulis menggunakan motherboard GIGABYTE EX58-Extreme) masuk ke sub menu M.I.T. Disitu ada pilihan perubahan frekuensi Bclk dari 1 hingga 1200 dan CPU Clock Ratio dari 1x hingga 44x (tergantung dari jenis prosessor yang dipakai). Perubahan pada angka Bclk otomatis akan mengubah frekuensi total prosessor.

Contoh :

24 x 150 MHz  = 3600 MHz  (3.6 GHz)

Image

Dengan mengubah Bclk (CPU Host Frequency) dari 133 menjadi 150, Anda akan mendapatkan kecepatan prosessor sebesar 3600 MHz (3.6GHz). Nilai ini 400 MHz lebih tinggi dari kecepatan standar prosessor Core i7-965 Extreme Edition.

Khusus untuk Core i7-965 Extreme, overclocking juga dapat dilakukan dengan mengubah nilai CPU Ratio atau CPU Multiplier.

Contoh :

28 x 133 MHz  = 3724 MHz (3.724 GHz)
Image

Dengan mengubah nilai CPU Clock Ratio dari 24 menjadi 28, akan didapatkan frekuensi prosessor sebesar 3724 MHz dari kecepatan standar 3200 MHz. Sekali lagi perlu diperhatikan, overclocking dengan mengubah CPU Clock Ratio hanya berlaku untuk prosessor jenis Core i7-965 Extreme. Untuk Core i7-920 dan 940 CPU Clock Ratio tidak dapat diubah ke angka yang lebih tinggi, karena secara fabrikasi Intel telah mengunci CPU Clock Ratio. Untuk Core i7-920 dan 940, overclocking hanya dapat dilakukan dengan mengubah CPU Host Frequency (Bclk).

Perlu diingat, pada kondisi ter-overclock, faktor kestabilan sistem harus diperhatikan. Ketidakstabilan dapat terjadi karena banyak hal, salah satunya diakibatkan kecepatan QPI yang ikut naik (bila Bclk yang dinaikkan), faktor lainnya adalah kecepatan DDR3 dan Uncore Frequency yang ikut naik dari standarnya.

Gambarannya dapat dilihat di bawah ini

Image

QPI standar prosessor Intel Core i7-965 Extreme adalah 6.4 GT/s dengan Bclk sebesar 133 MHz, Uncore Frequency 2.66 GHz dan DDR3 pada kecepatan 1333 MHz. Perhatikan gambar di atas, jika Bclk dinaikkan sebesar 150 MHz akan berdampak pada naiknya frekuensi QPI, Uncore dan DDR3, ketiga komponen ini erat dan saling ketergantungan dengan Bclk. Bila salah satu dari ketiga komponen ini bekerja pada kondisi tidak normal atau pada kecepatan lebih tinggi dari standar dan toleransi telah terlewati akan menyebabkan ketidakstabilan pada system. Contoh ketidakstabilan system berupa restart tanpa sebab, tidak dapat masuk ke operating system, aplikasi sering error dan masih banyak lagi. Untuk mengatasi ketidakstabilan system teroverlock, disediakan divider atau ratio pada masing masing komponen QPI, Uncore dan DDR3

QPI Link Speed.

Nilai QPI Bus diperoleh dari hasil perkalian Bclk dengan QPI Multiplier (QPI Link Speed). Pada kondisi Bclk berjalan pada kecepatan lebih tinggi dari standar (overclock), QPI Bus juga akan ikut teroverclock. QPI Multiplier pada kondisi default untuk Core i7-965 XE adalah 48, dengan Bclk 133 MHz, maka 48 x 133 MHz = 6.384 GT/s (dibulatkan menjadi 6.4 GT/s). Sedangkan pada prosessor Core i7 -920 dan Core i7, QPI Bus lebih rendah, yaitu 4.8 GT/s, diperoleh dari perkalian 36 x 133 MHz, artinya Core i7-920 dan 940 memiliki QPI Multiplier standar sebesar 36.

Ketika melakukan overclock melalui Bclk, dimana kecepatan Bclk dinaikkan dari kondisi normal, misalnya 150 MHz, QPI Bus menjadi 48 x 150 MHz = 7200 (7.2 GT/s), terkadang terjadi ketidakstabilan sistem pada kondisi QPI Bus setinggi ini. Untuk mengatasi masalah tersebut serta meningkatkan kestabilan sistem, bisa  Anda dapat menaikkan pasokan tegangan (voltase) pada VTT dan PLL. Ini bisa Anda lakukan dari BIOS, pada submenu MIT pilih QPI PLL Voltage atau QPI VTT.

PERHATIAN: Perubahan tegangan ini hanya dapat dilakukan bila Anda menggunakan cooling non standar Intel atau 3rd party cooling dengan performa tinggi. Naikkan tegangan sedikit demi sedikit dan selalu uji kestabilan sistem dengan benchmark.

Jika pilihan menaikkan tegangan terlalu beresiko, cara lain yang dapat dilakukan adalah dengan mengubah/menurunkan nilai QPI Link Speed, di BIOS disediakan beberapa multiplier mulai dari AUTO, x36, x44, x48 dan Slow Mode.

Image

Selain itu, dengan menurunkan QPI Link Speed, perolehan Bclk serta total clock prosessor  juga akan lebih tinggi karena QPI Bus masih dalam batas toleransi.

Di bawah ini dapat dilihat tabel QPI Bus dengan berbagai kemungkinan Bclk, CPU Ratio dan QPI Link Speed

Image
Klik gambar untuk melihat versi besarnya

Uncore Frequency

Uncore Frequency berhubungan dengan kecepatan L3 Cache sekaligus memiliki ikatan yang erat dengan QPI dan IMC. Semakin tinggi Uncore Frequency maka kinerja akan semakin tinggi, meski pada kecepatan prosessornya sama. Gambar di bawah ini akan menjelaskan posisi Uncore pada sebuah prosessor Core i7.

Image

Uncore Frequency diperoleh dari hasil perkalian : Bclk x Uncore Multiplier. Pada kondisi standar, Bclk 133 MHz, Uncore Multiplier bernilai 12, sehingga Uncore Frequency menjadi 1600 MHz. Pilihan Uncore Multiplier disediakan di BIOS dari 12 hingga 30. Jika ingin menaikkan kecepatan Uncore, Anda tinggal ubah nilai Uncore Multiplier ke angka yang lebih besar. Limitasi Uncore untuk pendingin berbasis udara atau air (Heatsink Fan atau Watercooling) sekitar 4000 Mhz sampai 4100 MHz. Sedangkan jika menggunakan pendingin subzero (Dry Ice, Phase Change atau Liquid Nitrogen), limitasi Uncore ada pada angka 4500 MHz sampai 4600 MHz.

Image

Memory Multiplier

Faktor penting terakhir dalam overclocking Intel Core i7 adalah Memory Multiplier. Prosessor berkecepatan tinggi (dibaca : clock), akan memiliki performa yang tidak seimbang bila tidak diikuti dengan kecepatan memory yang tinggi juga. Disini memory multiplier memegang peranan. Dua buah sistem dengan prosesor yang sama dan kecepatan clocknya sama bisa berbeda dalam hal kinerja karena perbedaan frekuensi memory.

Di bawah ini terdapat tabel kalkulasi divider dan kecepatan memory. Motherboard yang digunakan adalah GIGABYTE EX58 Extreme, sehingga tabel ini diperuntukan hanya untuk motherboard tersebut

Image
Klik gambar untuk melihat versi besarnya
Multiplier Memory dapat diubah dari BIOS pada pilihan System Memory Multiplier di dalam sub menu MIT. Multiplier yang disediakan mulai dari 6.0, 8.0, 10.0, 12.0, 14.0, 16.0 dan 18.0. Misalkan Core i7-965XE dengan Bclk 133 MHz berjalan pada kondisi standar, memory berjalan pada kecepatan 1333 MHz. Hal ini berarti multiplier memory bekerja pada 10.0. Jika ingin menaikkan performa sistem tanpa menaikkan kecepatan Bclk atau CPU Ratio, naikkan saja memory multiplier ke angka multiplier yang lebih tinggi. Untuk mencapai hal ini tentu saja dibutuhkan memory DDR3 yang mampu berjalan lebih tinggi.

CONTOH:  Sebuah sistem berbasis Intel Core i7 menggunakan memory DDR3 Triple Channel 1600 MHz. Ketika dipasangkan pada kondisi standar, BIOS akan tetap mengenalinya sebagai DDR3-1333, multiplier memory yang bekerja pada multi 10. Alangkah mubazirnya, kecepatan memory setinggi ini hanya berjalan pada 1333 MHz. Untuk dapat memanfaatkan kecepatan 1600 sesuai standarisasi pabrik memory, memory multiplier dapat diubah menjadi 12.00, sehingga kecepatan memory berjalan pada 1600 MHz ( 133 MHz x 12.0). Kecepatan memory juga akan ikut berubah, bila Bclk dinaikkan. Contoh Bclk pada kecepatan 150 MHz dengan memory multiplier 12, total kecepatan memory yang diperoleh akan menjadi 150 Mhz x 12.0 = 1800 MHz.

Mitos Tegangan Overclocking Intel Core i7

Tegangan atau voltase mutlak diperlukan untuk overclocking. Tegangan tidak hanya berperan dalam pencapaian overclocking, namun juga berpengaruh besar pada kestabilan overclocking itu sendiri. Mitos-mitos menyangkut tegangan seperti tegangan memory jangan lebih dari 1.65 volt, karena dapat merusak prosesor memang ada benarnya. Bila dilihat dari arsitektur Core i7 sendiri, IMC sudah terintegrasi pada prosesor, dampak dari pemberian tegangan memory yang berlebihan akan dapat merusak IMC sekaligus prosessor itu sendiri. Hal ini sebelumnya sudah terjadi pada AMD. Untuk menghindari hal tersebut para produsen motherboard AMD membatasi pilihan tegangan memory untuk menghindari rusaknya IMC pada prosesor. Lalu, bagaimana nasib memory memory DDR3 yang memiliki tegangan operasional diatas 1.65 volt ? Apakah masih bisa digunakan? Dalam percobaan yang dilakukan, penulis pernah menggunakan tegangan hingga 1.8 volt dalam jangka waktu cukup lama dan tidak mengalami degradasi pada prosesor atau hingga prosesor mati. Ternyata pengaruh tegangan memory secara tidak langsung mempengaruhi tegangan lainnya, terutama tegangan IOH (tegangan chipset atau IOH Core Voltage) dan QPI/ VTT Voltage. IOH Voltage memiliki nilai default 1.2 volt dan QPI/VTT Voltage memiliki nilai default 1.1 volt. Dalam percobaan, ternyata efek menaikkan nilai kedua tegangan ini sangat membantu kestabilan sistem terutama pada frekuensi memory tinggi dan tegangan memory yang tinggi. Penulis mengatur IOH Voltage pada 1.25 volt dan QPI/VTT Voltage pada 1.3 volt. Pada nilai ini diperoleh kecepatan DDR3-2000 dengan tegangan 1.74 volt dan berjalan stabil. Screenshot dapat dilihat di bawah ini.

Image
Klik untuk melihat gambar besarnya

Penjelasan mengenai pilihan tegangan lainnya dapat dilihat pada tabel di bawah ini

Image
Klik untuk melihat gambar besarnya

Kesimpulan

Overclocking pada platform Core i7 ini lebih menarik dibandingkan platform sebelumnya. Ada kesamaan yang kentara dengan overclocking pada platform AMD. Tentu saja karena keduanya menggunakan konsep arsitektur yang sama. Kecepatan prosessor tidak lagi menjadi kemutlakan dalam mendapatkan kinerja yang lebih, namun parameter lain seperti QPI Bus, Uncore Frequency dan tentu saja kecepatan memory menyumbang peranan yang cukup signifikan dalam meningkatkan kinerja secara keseluruhan. Hasil overclocking yang ideal diperoleh dari kombinasi kecepatan prosessor, QPI Bus, Uncore Frequency, serta kecepatan memory. Komponen komponen ini saling terkait dengan erat, disinilah letak keunikan overclocking Core i7.

Penutup

Sebagai penutup, penulis mengucapkan terimakasih kepada :

•    Intel Indonesia untuk Prosessor Core i7-965 Exteme Edition
•    GIGABYTE Technology untuk Motherboard GIGABYTE EX58-Extreme dan EX58-UD5
•    Foxhound dan TeamGroup Taiwan untuk memory Team Xtreem DDR3
•    Dinamika Perkasa Jaya untuk HSF Xigmatek

Maret 26, 2009 Posted by | Uncategorized | Tinggalkan komentar

Sejarah Prosesor Intel

Berikut adalah sedikit sejarah perkembangan prosesor Intel dan para clone-nya yang berhasil disarikan

  • Debut Intel dimulai dengan processor seri MCS4 yang merupakan cikal bakal dari prosesor i4040. Processor 4 bit ini yang direncanakan untuk menjadi otak calculator , pada tahun yang sama (1971), intel membuat revisi ke i440. Awalnya dipesan oleh sebuah perusahaan Jepang untuk pembuatan kalkulator , ternyata prosesor ini jauh lebih hebat dari yang diharapkan sehingga Intel membeli hak guna dari perusahaan Jepang tersebut untuk perkembangan dan penelitian lebih lanjut. Di sinilah cikal bakal untuk perkembangan ke arah prosesor komputer.
  • Berikutnya muncul processor 8 bit pertama i8008 (1972), tapi agak kurang disukai karena multivoltage.. lalu baru muncul processor i8080, disini ada perubahan yaitu jadi triple voltage, pake teknologi NMOS (tidak PMOS lagi), dan mengenalkan pertama kali sistem clock generator (pake chip tambahan), dikemas dalam bentuk DIP Array 40 pins. Kemudian muncul juga processor2 : MC6800 dari Motorola -1974, Z80 dari Zilog -1976 (merupakan dua rival berat), dan prosessor2 lain seri 6500 buatan MOST, Rockwell, Hyundai, WDC, NCR dst. Z80 full compatible dengan i8008 hanya sampai level bahasa mesin. Level bahasa rakitannya berbeda (tidak kompatibel level software). Prosesor i8080 adalah prosesor dengan register internal 8-bit, bus eksternal 8-bit, dan memori addressing 20-bit (dapat mengakses 1 MB memori total), dan modus operasi REAL.
  • Thn 77 muncul 8085, clock generatornya onprocessor, cikal bakalnya penggunaan single voltage +5V (implementasi s/d 486DX2, pd DX4 mulai +3.3V dst).
  • i8086, prosesor dengan register 16-bit, bus data eksternal 16-bit, dan memori addressing 20-bit. Direlease thn 78 menggunakan teknologi HMOS, komponen pendukung bus 16 bit sangat langka , sehingga harganya menjadi sangat mahal.
  • Maka utk menjawab tuntutan pasar muncul i8088 16bit bus internal, 8bit bus external. Sehingga i8088 dapat memakai komponen peripheral 8bit bekas i8008. IBM memilih chip ini untuk pebuatan IBM PC karena lebih murah daripada i8086. Kalau saja CEO IBM waktu itu tidak menyatakan PC hanyalah impian sampingan belaka, tentu saja IBM akan menguasai pasar PC secara total saat ini. IBM PC first release Agustus 1981 memiliki 3 versi IBM PC, IBM PC-Jr dan IBM PC-XT (extended technology). Chip i8088 ini sangat populer, sampai NEC meluncurkan sebuah chip yang dibangun berdasarkan spesifikasi pin chip ini, yang diberi nama V20 dan V30. NEC V20 dan V30 adalah processor yang compatible dengan intel sampai level bahasa assembly (software).

Chip 8088 dan 8086 kompatibel penuh dengan program yang dibuat untuk chip 8080, walaupun mungkin ada beberapa program yang dibuat untuk 8086 tidak berfungsi pada chip 8088 (perbedaan lebar bus)

  • Lalu muncul 80186 dan i80188.. sejak i80186, prosessor mulai dikemas dalam bentuk PLCC, LCC dan PGA 68 kaki.. i80186 secara fisik berbentuk bujursangkar dengan 17 kaki persisi (PLCC/LCC) atau 2 deret kaki persisi (PGA) dan mulai dari i80186 inilah chip DMA dan interrupt controller disatukan ke dalam processor. semenjak menggunakan 286, komputer IBM menggunakan istilah IBM PC-AT (Advanced Technology)dan mulai dikenal pengunaan istilah PersonalSystem (PS/1). Dan juga mulai dikenal penggunaan slot ISA 16 bit yang dikembangkan dari slot ISA 8 bit , para cloner mulai ramai bermunculan. Ada AMD, Harris & MOS yang compatible penuh dengan intel. Di 286 ini mulai dikenal penggunaan Protected Virtual Adress Mode yang memungkinkan dilakukannya multitasking secara time sharing (via hardware resetting).

Tahun 86 IBM membuat processor dengan arsitektur RISC 32bit pertama untuk kelas PC. Namun karena kelangkaan software, IBM RT PC ini “melempem” untuk kelas enterprise, RISC ini berkembang lebih pesat, setidaknya ada banyak vendor yang saling tidak kompatibel.

  • Lalu untuk meraih momentum yang hilang dari chip i8086, Intel membuat i80286, prosesor dengan register 16-bit, bus eksternal 16-bit, mode protected terbatas yang dikenal dengan mode STANDARD yang menggunakan memori addressing 24-bit yang mampu mengakses maksimal 16 MB memori. Chip 80286 ini tentu saja kompatibel penuh dengan chip-chip seri 808x sebelumnya, dengan tambahan beberapa set instruksi baru. Sayangnya chip ini memiliki beberapa bug pada desain hardware-nya, sehingga gagal mengumpulkan pengikut.
  • Pada tahun 1985, Intel meluncurkan desain prosesor yang sama sekali baru: i80386. Sebuah prosesor 32-bit , dalam arti memiliki register 32-bit, bus data eksternal 32-bit, dan mempertahankan kompatibilitas dengan prosesor generasi sebelumnya, dengan tambahan diperkenalkannya mode PROTECTED 32-BIT untuk memori addressing 32-bit, mampu mengakses maksimum 4 GB , dan tidak lupa tambahan beberapa instruksi baru. Chip ini mulai dikemas dalam bentuk PGA (pin Grid Array)

Prosesor Intel sampai titik ini belum menggunakan unit FPU secara
internal . Untuk dukungan FPU, Intel meluncurkan seri 80×87. Sejak 386 ini mulai muncul processor cloner : AMD, Cyrix, NGen, TI, IIT, IBM (Blue Lightning) dst, macam-macamnya :

i80386 DX (full 32 bit)
i80386 SX (murah karena 16bit external)
i80486 DX (int 487)
i80486 SX (487 disabled)
Cx486 DLC (menggunakan MB 386DX, juga yang lain)
Cx486 SLC (menggunakan MB 386SX)
i80486DX2
i80486DX2 ODP
Cx486DLC2 (arsitektur MB 386)
Cx486SLC2 (arsitektur MB 386)
i80486DX4
i80486DX4 ODP
i80486SX2
Pentium
Pentium ODP

  • Sekitar tahun 1989 Intel meluncurkan i80486DX. Seri yang tentunya sangat populer, peningkatan seri ini terhadap seri 80386 adalah kecepatan dan dukungan FPU internal dan skema clock multiplier (seri i486DX2 dan iDX4), tanpa tambahan instruksi baru. Karena permintaan publik untuk prosesor murah, maka Intel meluncurkan seri i80486SX yang tak lain adalah prosesor i80486DX yang sirkuit FPU-nya telah disabled . Seperti yang seharusnya, seri i80486DX memiliki kompatibilitas penuh dengan set instruksi chip-chip seri sebelumnya.
  • AMD dan Cyrix kemudian membeli rancangan prosesor i80386 dan i80486DX untuk membuat prosesor Intel-compatible, dan mereka terbukti sangat berhasil. Pendapat saya inilah yang disebut proses ‘cloning’, sama seperti cerita NEC V20 dan V30. AMD dan Cyrix tidak melakukan proses perancangan vertikal (berdasarkan sebuah chip seri sebelumnya), melainkan berdasarkan rancangan chip yang sudah ada untuk membuat chip yang sekelas.
  • Tahun 1993, dan Intel meluncurkan prosesor Pentium. Peningkatannya terhadap i80486: struktur PGA yang lebih besar (kecepatan yang lebih tinggi , dan pipelining, TANPA instruksi baru. Tidak ada yang spesial dari chip ini, hanya fakta bahwa standar VLB yang dibuat untuk i80486 tidak cocok (bukan tidak kompatibel) sehingga para pembuat chipset terpaksa melakukan rancang ulang untuk mendukung PCI. Intel menggunakan istilah Pentium untuk meng”hambat” saingannya. Sejak Pentium ini para cloner mulai “rontok” tinggal AMD, Cyrix . Intel menggunakan istilah Pentium karena Intel kalah di pengadilan paten. alasannya angka tidak bisa dijadikan paten, karena itu intel mengeluarkan Pentium menggunakan TM. AMD + Cyrix tidak ingin tertinggal, mereka mengeluarkan standar Pentium Rating (PR) sebelumnya ditahun 92 intel sempat berkolaborasi degan Sun, namun gagal dan Intel sempat dituntut oleh Sun karena dituduh menjiplak rancangan Sun. Sejak Pentium, Intel telah menerapkan kemampuan Pipelining yang biasanya cuman ada diprocessor RISC (RISC spt SunSparc). Vesa Local Bus yang 32bit adalah pengembangan dari arsitektur ISA 16bit menggunakan clock yang tetap karena memiliki clock generator sendiri (biasanya >33Mhz) sedangkan arsitektur PCI adalah arsitektur baru yang kecepatan clocknya mengikuti kecepatan clock Processor (biasanya kecepatannya separuh kecepatan processor).. jadi Card VGA PCI kecepatannya relatif tidak akan sama di frekuensi MHz processor yang berbeda alias makin cepat MHz processor, makin cepat PCI-nya
  • Tahun 1995, kemunculan Pentium Pro. Inovasi disatukannya cache memori ke dalam prosesor menuntut dibuatnya socket 8 . Pin-pin prosesor ini terbagi 2 grup: 1 grup untuk cache memori, dan 1 grup lagi untuk prosesornya sendiri, yang tak lebih dari pin-pin Pentium yang diubah susunannya . Desain prosesor ini memungkinkan keefisienan yang lebih tinggi saat menangani instruksi 32-bit, namun jika ada instruksi 16-bit muncul dalam siklus instruksi 32-bit, maka prosesor akan melakukan pengosongan cache sehingga proses eksekusi berjalan lambat. Cuma ada 1 instruksi yang ditambahkan: CMOV (Conditional MOVe) .
  • Tahun 1996, prosesor Pentium MMX. Sebenarnya tidak lebih dari sebuah Pentium dengan unit tambahan dan set instruksi tambahan, yaitu MMX. Intel sampai sekarang masih belum memberikan definisi yang jelas mengenai istilah MMX. Multi Media eXtension adalah istilah yang digunakan AMD . Ada suatu keterbatasan desain pada chip ini: karena modul MMX hanya ditambahkan begitu saja ke dalam rancangan Pentium tanpa rancang ulang, Intel terpaksa membuat unit MMX dan FPU melakukan sharing, dalam arti saat FPU aktif MMX non-aktif, dan sebaliknya. Sehingga Pentium MMX dalam mode MMX tidak kompatibel dengan Pentium.

Bagaimana dengan AMD K5? AMD K5-PR75 sebenarnya adalah sebuah ‘clone’ i80486DX dengan kecepatan internal 133MHz dan clock bus 33MHz . Spesifikasi Pentium yang didapat AMD saat merancang K5 versi-versi selanjutnya dan Cyrix saat merancang 6×86 hanyalah terbatas pada spesifikasi pin-pin Pentium. Mereka tidak diberi akses ke desain aslinya. Bahkan IBM tidak mampu membuat Intel bergeming (Cyrix, mempunyai kontrak terikat dengan IBM sampai tahun 2005)

Mengenai rancangan AMD K6, tahukah anda bahwa K6 sebenarnya adalah rancangan milik NexGen ? Sewaktu Intel menyatakan membuat unit MMX, AMD mencari rancangan MMX dan menambahkannya ke K6. Sayangnya spesifikasi MMX yang didapat AMD sepertinya bukan yang digunakan Intel, sebab terbukti K6 memiliki banyak ketidakkompatibilitas instruksi MMX dengan Pentium MMX.

  • Tahun 1997, Intel meluncurkan Pentium II, Pentium Pro dengan teknologi MMX yang memiliki 2 inovasi: cache memori tidak menjadi 1 dengan inti prosesor seperti Pentium Pro , namun berada di luar inti namun berfungsi dengan kecepatan processor. Inovasi inilah yang menyebabkan hilangnya kekurangan Pentium Pro (masalah pengosongan cache) Inovasi kedua, yaitu SEC (Single Edge Cartidge), Kenapa? Karena kita dapat memasang prosesor Pentium Pro di slot SEC dengan bantuan adapter khusus. Tambahan : karena cache L2 onprocessor, maka kecepatan cache = kecepatan processor, sedangkan karena PII cachenya di”luar” (menggunakan processor module), maka kecepatannya setengah dari kecepatan processor. Disebutkan juga penggunaan Slot 1 pada PII karena beberapa alasan :

Pertama, memperlebar jalur data (kaki banyak – Juga jadi alasan Socket 8), pemrosesan pada PPro dan PII dapat paralel. Karena itu sebetulnya Slot 1 lebih punya kekuatan di Multithreading / Multiple Processor. ( sayangnya O/S belum banyak mendukung, benchmark PII dual processorpun oleh ZDBench lebih banyak dilakukan via Win95 ketimbang via NT)

Kedua, memungkinkan upgrader Slot 1 tanpa memakan banyak space di Motherboard sebab bila tidak ZIF socket 9 , bisa seluas Form Factor(MB)nya sendiri konsep hemat space ini sejak 8088 juga sudah ada .Mengapa keluar juga spesifikasi SIMM di 286? beberapa diantaranya adalah efisiensi tempat dan penyederhanaan bentuk.

Ketiga, memungkinkan penggunaan cache module yang lebih efisien dan dengan speed tinggi seimbang dengan speed processor dan lagi-lagi tanpa banyak makan tempat, tidak seperti AMD / Cyrix yang “terpaksa” mendobel L1 cachenya untuk menyaingi speed PII (karena L2-nya lambat) sehingga kesimpulannya AMD K6 dan Cyrix 6×86 bukan cepat di processor melainkan cepat di hit cache! Sebab dengan spec Socket7 kecepatan L2 cache akan terbatas hanya secepat bus data / makin lambat bila bus datanya sedang sibuk, padahal PII thn depan direncanakan beroperasi pada 100MHz (bukan 66MHz lagi). Point inilah salah satu alasan kenapa intel mengganti chipset dari 430 ke 440 yang berarti juga harus mengganti Motherboard.

September 2, 2008 Posted by | Uncategorized | | 1 Komentar

Sejarah Perkembangan Komputer

workstation.jpg   Pada tahun 1647, seorang ahli matematik Perancis yang bernama Blaise Pascal(1623-1662) telah mencipta mesin kira yang pertama. Penciptaannya itu telah memulakan zaman komputer. Setelah itu, Charles Babbage(1791-1871) telah mencipta komputer yang pertama di dunia tetapi beliau tidak mendapat bantuan kerajaannya dalam pengeluaran komputer secara komersial. Pada tahun 1944, Howard Aiken(1900-1973) telah mencipta komputer digital yang pertama di dunia. Mesin itu dikenali sebagai Mark I. Saiz komputer ini sangat besar.(panjangnya ialah 51 kaki dan ketinggiannya ialah 8 kaki)

   Dari tahun 1942 sehingga 1959, pengeluaran komputer secara kecil-kecilan d1stcomputer1.jpgimulakan. Pada tahun 1953, lebih kurang 100 buah komputer sahaja yang digunakan di seluruh dunia. Komputer yang dikeluarkan pada zaman ini dikenali sebagai komputer generasi pertama. Pada zaman ini, komputer menggunakan injap. Ia cepat memanas dan saiznya juga besar. Komputer ini juga tidak berfungsi dengan baik.

   Pada tahun 1959, injap telah ditukar dan digantikan dengan transistor kecil(germanium) dan silikon. Saiz kedua-dua bahan ini lebih kecil dari injap. Komputer mula berfungsi dengan lebih baik. Komputer-komputer yang telah dikeluarkan dari tahun 1959 sehingga 1965 dikenali sebagai komputer generasi kedua.

   Pada tahun 1965 pula, transistor kecil telah memberi laluan kepada sambungan “integrated circuit”. Saiznya lebih kecil daripada transistor. Ia digelar sebagai IC. Kandungan IC ini mempunyai 10-100 transistor yang sangat kecil. Komputer ini telah disambungkan kepada monitor(yang menyerupai televisyen). Pada masa yang sama, perhubungan di antara komputer juga diwujudkan. Perhubungan ini menggunakan talian telefon. Kuasa memori dan kelajuan komputer juga bertambah. Perkembangan ini telah menelan masa 5 tahun. Tahap ini dikenali sebagai komputer generasi ketiga.

   Dari tahun 1970, dunia komputer telah mengalami perubahan yang begitu ketara. Perubahan ini telah membawa kesan kepada kehidupan manusia. Pelbagai ciptaan baru di dunia komputer terus memantapkan lagi dunia komputer sehingga hari ini. Tahap ini dikenali sebagai komputer generasi keempat. IC komputer yang digunakan untuk pengeluaran komputer kini begitu canggih dan dikenali sebagai “Large Scale Integration(LSI)”. LSI ini mengandungi beribu-ribu transistor yang sangat kecil. Dahulu, berat sebuah komputer ialah 30 ton dan sebuah gudang diperlukan untuk menyimpannya tetapi kini komputer hanya sebesar tapak tangan sahaja

Januari 19, 2008 Posted by | Uncategorized | Tinggalkan komentar